
Week 12 – Wednesday

 What did we talk about last time?
 Synchronization design patterns
 Producer-consumer

 The producer-consumer problem comes up all the time in
concurrent systems
 One or more threads is producing elements that go into a buffer
 One or more threads is consuming elements from the buffer

 A producer can't put an item into a full buffer and must block
 A consumer can't remove an item from an empty buffer and must

block
 Example:
 An OS thread is putting data into a buffer that's coming across the

network
 A user thread is trying to read data out of that buffer

 We can move on to a version with a bounded buffer
 Our implementation uses a circular array (that wraps back around to the beginning)
 The following code is unsafe for two reasons:
 It doesn't check to see if the buffer is full when enqueuing or empty when dequeuing
 Changing queue data is unsafe for a multi-threaded application

void enqueue_unsafe (queue_t *queue, data_t *data)
{
// Store the data in the array and advance the index
queue->contents[queue->back++] = data;
queue->back %= queue->capacity;

}

data_t * dequeue_unsafe (queue_t *queue)
{
data_t * data = queue->contents[queue->front++];
queue->front %= queue->capacity;
return data;

}

 We could use locks and check a variable giving the total number of elements in the queue
 However, semaphores have this feature built in
 We initialize the space semaphore to the maximum size of the queue
 We initialize the items semaphore to 0

void enqueue (queue_t *queue, data_t *data, sem_t *space, sem_t *items)
{
sem_wait (space);
enqueue_unsafe (queue, data);
sem_post (items);

}

data_t * dequeue (queue_t * queue, sem_t *space, sem_t *items)
{
sem_wait (items);
data_t * data = dequeue_unsafe (queue);
sem_post (space);
return data;

}

 Unfortunately, the two semaphores aren't enough when there are multiple producers and consumers
 In that situation, two producers could both be calling enqueue_unsafe(), potentially causing a race

condition with the increment
 The solution is to one lock for producers and one lock for consumers
 We could use a single lock for both, but using two locks allows producers and consumers to modify the queue

concurrently yet safely

void enqueue (queue_t *queue, data_t *data, sem_t *space, sem_t *items, pthread_mutex_t *producer_lock)
{

sem_wait (space);
pthread_mutex_lock (producer_lock);
enqueue_unsafe (queue, data);
pthread_mutex_unlock (producer_lock);
sem_post (items);

}

data_t * dequeue (queue_t * queue, sem_t *space, sem_t *items, pthread_mutex_t *consumer_lock)
{

sem_wait (items);
pthread_mutex_lock (consumer_lock);
data_t * data = dequeue_unsafe (queue);
pthread_mutex_unlock (consumer_lock);
sem_post (space);
return data;

}

 What if we have a situation where we want to allow an
unlimited number of reader threads to read data?

 But if a single writer needs to write, no other threads can
access the data

 Changing the data can cause race conditions, but merely
reading it concurrently is fine
 And can make reading much faster!

 This is exactly the scenario we solved with lightswitches:
 Initialize a semaphore to 1
 Initialize a counter variable to 0
 Create a lock
 Whenever a reader thread wants to read:

▪ It acquires the lock
▪ Increments the counter
▪ If the counter is 1, call sem_wait() on the semaphore
▪ Unlock the lock

 Whenever a reader thread is done reading:
▪ It acquires the lock
▪ It decrements the counter
▪ If the counter is 0, it calls sem_post() on the semaphore
▪ Unlock the lock

 Writers call sem_wait() to start writing and sem_post() when done

 The lightswitch has the behavior described: waiting on the semaphore for
the first reader in the room and posting on it for the last reader to leave

void *reader (void * args)
{
ls_t *lightswitch = (ls_t *) args;
enter (lightswitch);
// Read the shared data
leave (lightswitch);
// Do other work and exit thread

}

void * writer (void * _args)
{
ls_t *lightswitch = (ls_t *) args;
sem_wait (lightswitch->semaphore);
// Write to the shared data
sem_post (lightswitch->semaphore);
// Do other work and exit thread

}

 When a reader comes into the
room, it becomes blocked for
writers

 If more readers come in before
others leave, writers might
never get to enter

 What do we do?

 We add a turnstile for the readers
 They pass through without any problem at first

 When a writer wants to write, it waits on the reader
semaphore

 This blocks any new readers from entering

 The lightswitch has the same behavior as before
struct args {
ls_t *lightswitch;
sem_t *turnstile;

};

void * reader (void * _args)
{
struct args *args = (struct args *) _args;
sem_wait (args->turnstile);
sem_post (args->turnstile);
enter (args->lightswitch);
// Read the shared data
leave (args->lightswitch);

}

void * writer (void * _args)
{
struct args *args = (struct args *) _args;
sem_wait (args->turnstile);
sem_wait (lightswitch->semaphore);
sem_post (args->turnstile);
// Write to the shared data structure
sem_post (lightswitch->semaphore);

}

 The system starts off with its two semaphores having the following values:
 Lightswitch: 1
 Turnstile: 1

Reader 1 Enters
• Lightswitch: 0
• Turnstile: 1

Reader 2 Enters
• Lightswitch: 0
• Turnstile: 1

Writer Tries to Enter
(Blocked)
• Lightswitch: 0
• Turnstile: 0

Reader 3 Tries to
Enter (Blocked)
• Lightswitch: 0
• Turnstile: 0

Reader 1 Exits
• Lightswitch: 0
• Turnstile: 0

Reader 2 Exits
• Lightswitch: 1
• Turnstile: 0

Writer Enters
• Lightswitch: 0
• Turnstile: 1

Writer Exits
• Lightswitch: 1
• Turnstile: 1

Reader 3 Enters
• Lightswitch: 0
• Turnstile: 1

 The readers-writers problem can be extended to a problem with the
following characteristics:
 Searchers are searching for data (similar to regular readers)
 Inserters are a kind of writer that only adds data
 Deleters are a kind of writer that only removes data

 Rules:
 Searchers can be concurrent with each other and an inserter
 Inserters can be concurrent with searchers, but there can only be one inserter at

a time
 Deleters must be mutually exclusive with everyone

 You can imagine a version of this problem for concurrent accesses to
databases

 Searchers use a lightswitch as before
 Inserters use their own lightswitch but also have a lock to

prevent concurrent insertions with each other
 Deleters must wait on both lightswitches
 This solution works because a deleter can enter only when

there are no searchers or inserters

 The searcher code is essentially the same as the reader code
from our first reader-writer solution

void *searcher (void * args)
{

ls_t *search_switch = (ls_t *) args;
enter (search_switch);
// Search through data
leave (search_switch);
// Do other work and exit thread

}

 The insert code is similar except that it has a lock as well
struct ins_args {
ls_t *insert_switch;
pthread_mutex_t *insert_lock;

};

void *inserter (void * args)
{
struct ins_args *args = (struct ins_args *) args;
enter (args->insert_switch);
pthread_mutex_lock (args->insert_lock);
// Do insertion
pthread_mutex_unlock (args->insert_lock);
leave (args->insert_switch);
// Do other work and exit thread

}

 The delete code has to wait on both lightswitches

void * deleter ()
{

sem_wait (search_switch->semaphore);
sem_wait (insert_switch->semaphore);
// Do deletion
sem_post (insert_switch->semaphore);
sem_post (search_switch->semaphore);

}

 Like our first solution for readers-writers, deleters can be starved if
searchers or inserters continue to arrive
 Never getting to run is called starvation

 We could increase fairness for this solution by adding turnstiles as
well
 One turnstile semaphore could be shared by all searchers and inserters
 When a deleter comes along, it waits on the turnstile, blocking all new

searchers and inserters from entering
 When a deleter gets access to the critical section, it posts on the turnstile,

allowing all waiting threads to get to their respective lightswitches

 A classic problem illustrating the difficulties of
concurrency is the dining philosophers problem

 Some number of philosophers sit at a round table
and only do two things:
 Think
 Eat rice

 In order to eat rice, they have to pick up two
chopsticks, one on the left and one on the right
 The book has them eat with forks, but chopsticks make

more sense for the problem
 You can eat rice with one fork, but you can't eat rice with

one chopstick
 Critically important: The numbers of chopsticks and

philosophers are equal

 We have to enforce mutual exclusion for
the chopsticks

 Two philosophers can't hold onto the
same chopstick at the same time

 It's unpredictable when each philosopher
is going to finish thinking and start
eating

 We need a solution that works no matter
what

 Let's say there are SIZE philosophers (and SIZE chopsticks)
 We can create SIZE locks, one for each chopstick
 Then, each philosopher will acquire the lock for her left chopstick

followed by the lock for her right chopstick
 In the following code, self is the index of the philosopher

void * philosopher (void * _args)
{
struct args *args = (struct args *) _args;
int self = args->self; // Philosopher index
int next = (self + 1) % SIZE;
pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
pthread_mutex_lock (args->locks[next]); // Pick up right chopstick
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}

 Imagine that every philosopher picks up her left chopstick at the
same moment

 Now, each will wait for another one to give up what would be their
right chopstick … forever

 We have the four conditions for deadlock:
 Mutual exclusion: Only one philosopher can hold the lock for a chopstick
 Hold-and-wait: Each philosopher acquires chopstick and tries to get

another
 No preemption: No philosopher can force another to give up her

chopstick
 Circular wait: Under the right circumstances, every philosopher can be

waiting for every other in a circle

 The dining philosophers problem is intentionally absurd
 But it's not too hard to write code that's almost identical, like this code that tries to find an

open port for incoming traffic and an open port for outgoing traffic

while (true)
{

in++;
in %= NUMBER_OF_PORTS;
if (!pthread_mutex_trylock (nic_locks[in]))

break;
}

// Locked network card in port for incoming data

while (true)
{

out++;
out %= NUMBER_OF_PORTS;
if (!pthread_mutex_trylock (nic_locks[out]))

break;
}

// Locked network card out port for outgoing data

 One solution is to add a semaphore initialized to SIZE – 1
 Then, only SIZE – 1 philosophers could try to grab a chopstick

void * philosopher (void * _args)
{

struct args *args = (struct args *) _args;
int self = args->self; // Philosopher index
int next = (self + 1) % SIZE;
sem_wait (args->can_eat); // Multiplexing semaphore
pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
pthread_mutex_lock (args->locks[next]); // Pick up right chopstick
sem_post (args->can_eat); // Multiplexing semaphore
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}

 In our example, the philosopher gets the first chopstick and immediately tries to get the
second

 In real situations, some work might need to get done between acquiring resources
 To avoid delays, it might be desirable to instead get a chopstick and then try to get the

second, releasing the first if that fails

while (! success)
{

pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
// Perform some work
// Then, try to get the right chopstick
if (pthread_mutex_trylock (args->locks[next]) != 0)

{
// Undo current progress
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick

}
else

success = true;
}

 We can break the circular wait condition with a clever ordering
 If every philosopher picks up her left chopstick at the same time, we're stuck
 But what if exactly one picked up her right chopstick first?
 Deadlock would become impossible!

void * philosopher (void * _args)
{

struct args *args = (struct args *) _args;
int self = args->self; // Philosopher index
int next = (self + 1) % SIZE;
if (self > next) swap (&self, &next); // Last philosopher swaps order
pthread_mutex_lock (args->locks[self]); // Pick up left chopstick
pthread_mutex_lock (args->locks[next]); // Pick up right chopstick
// Eat rice
pthread_mutex_unlock (args->locks[next]); // Put down right chopstick
pthread_mutex_unlock (args->locks[self]); // Put down left chopstick
// Do other work and exit thread

}

 I just like saying "atomic chopsticks"
 But it's also possible to use condition variables to acquire the chopsticks

as a set
 Acquire a chopstick-getting lock
 As long as your chopsticks aren't available

▪ Wait on a condition variable
 When they're available, mark them in-use
 Release the lock
 Eat
 Acquire the lock
 Mark your chopsticks available
 Broadcast a wake-up to everyone waiting on the condition variable

 Getting concurrent code to work is challenging:
 Just working at all
 Avoiding deadlock
 Providing fairness for different threads
 Tuning performance

 If you have a problem that involves coordinating multiple threads,
try to see if there's a similar problem in the literature

 It's hard but not impossible!
 Some computer scientists see concurrency as a challenge worth

pursuing

 David Patterson is a Turing Award winner
and former president of the ACM

 He's a deep hardware guy who was
watching the increase in processor core
count in the early 2000s

 In 2007, he proposed the following "13
dwarfs"
1. Dense linear algebra
2. Sparse linear algebra
3. Spectral methods
4. N-body methods
5. Structured grids
6. Unstructured grids
7. Map-reduce
8. Combinatorial logic

9. Graph traversal
10. Dynamic programming
11. Back-track/branch and bound
12. Graphical model inference
13. Finite state machine

 A dwarf is a kind of problem we'd really like
to have good hardware and software
approach for running in parallel

 After more than a decade, we still don't
have great approaches for most of these

 What was unexpected at the time is that
we'd have such good neural networks and
ways of training them in parallel

 Parallel and distributed systems
 Parallelism vs. concurrency
 Parallel design patterns

 Finish Project 3
 Due Friday by midnight!

 Read sections 9.1, 9.2, and 9.3

	COMP 3400
	Last time
	Questions?
	Project 3
	Producer-Consumer
	Producer-consumer
	Unsafe producer-consumer with a bounded queue
	Safe producer-consumer with a bounded queue and a single producer and consumer
	Safe producer-consumer with a bounded queue and multiple producers and consumers
	Readers-Writers
	Readers-Writers
	First solution: Lightswitches
	First solution code
	What's the problem with this solution?
	Second solution: Add a turnstile
	Second solution code
	Illustration of second solution
	Search-insert-delete problem
	Search-insert-delete solution
	Search code
	Inserter code
	Deleter code
	Issues with this solution
	Dining Philosophers
	Dining philosophers
	The problem
	A solution with deadlock
	Why it has deadlock
	Code that's equivalent to dining philosophers
	Solution by limiting access
	Solution by breaking hold and wait
	Solution by imposing order
	Solution with atomic chopsticks
	Takeaways
	Patterson's 13 dwarfs
	Ticket Out the Door
	Upcoming
	Next time…
	Reminders

